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Multitape Turing Machines

Theorem
If a two-tape Turing machine can carry out a computation in n steps,
then a one-tape Turing machine can simulate that computation in
O(n2) steps.

Corollary
If a two-tape Turing machine can carry out a computation in T (n)
steps, then a one-tape Turing machine can simulate that computation
in O(T (n)2) steps.
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Multitape Turing Machines

Proof.
For each move of the two-tape machine, the one-tape machine
must scan its tape to read the contents stored on Tape 2 of the
two-tape machine.
Each step of the two-tape machine can add at most 2 cells, one
on each tape.
After n moves, there are O(n) cells to scan.
Thus, the one-tape machine can simulate the computation in
n ·O(n) = O(n2) moves.
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Multitape Turing Machines

Corollary
If a k-tape Turing machine can carry out a computation in n steps, then
a one-tape Turing machine can simulate that computation in O(n2)
steps.

Proof.
Note that 2n and kn are both in O(n). The rest of the proof is the
same.
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Multitape Turing Machines

Theorem
If a nondeterministic Turing machine M can carry out a computation in
n steps, then a standard Turing machine can simulate that computation
in O(kan) steps, for some constants k and a dependent on M, but not
on n.

Note that what the nondeterministic Turing machine can do in
linear time may take exponential time on a deterministic Turing
machine.
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Deciding in time T (n)

Definition
A Turing machine M decides a language L in time T (n)) if M decides
every w ∈ L in at most time T (n), where n = |w |.

What about strings not in L?

Definition
A nondeterministic Turing machine M decides a language L in time
T (n) if for every w ∈ L, there is at least one path to acceptance and M
halts on all inputs w in at most T (n) moves, where n = |w |.
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The Classes DTIME(T (n)) and NTIME(T (N))

Definition
A language L is in the class DTIME(T (n)) if there exists a deterministic
multitape Turing machine that decides L in at most time T (n).

Definition
A language L is in the class NTIME(T (n)) if there exists a
nondeterministic multitape Turing machine that decides L in at most
time T (n).
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Definition (The Class P)
The class P is the class of all languages that can be decided
deterministically in polynomial time. That is,

P =
∞⋃

i=1

DTIME(ni).

Definition (The Class NP)
The class NP is the class of all languages that can be decided
nondeterministically in polynomial time. That is,

NP =
∞⋃

i=1

NTIME(ni).
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SAT is in NP

Example (SAT is in NP)
Set up the problem.

Let n be the length of the boolean expression e (in CNF). (n =
Number of literals.)
Encode e on the tape using the alphabet

Σ = {x ,0,1, x ,∧,∨, (, )}.

This would require O(n log n) cells.
Generate a solution.

Nondeterministically choose a boolean value for each of the
variables.
This can be done in O(n) time.
Write the potential solution on Tape 2.
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SAT is in NP

Example (SAT is in NP)
Verify the solution.

For each xi , get its value from Tape 2.
Scan Tape 1, marking the clauses that it satisfies.
This can be done in time O(n log n) for each variable.
So it can be done for all the variables in O(n2 log n) time.
Finally, scan Tape 1 to see whether every clause is satisfied.
This can be done in O(n log n) time.

Thus, the problem can be decided in O(n2 log n) ⊂ O(n3) time.
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The Hamiltonian Path Problem

Definition (Hamiltonian Path)
Given a graph G, a Hamiltonian path is a path that passes through
every vertex of G exactly once.

Definition (The Hamiltonian Path Problem)
Given a graph G, the Hamiltonian Path Problem (HAMPATH) asks
whether there exists a Hamiltonian path in G.

Theorem
HAMPATH ∈ NP
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The Clique Problem

Definition (Clique)
Given a graph G, a clique is a complete subgraph G′ ⊆ G. That is,
every two vertices in G′ are adjacent.

Definition (The Clique Problem)
Given a graph G and an integer k , the Clique Problem (CLIQ) asks
whether there exists a clique in G of size k .

Theorem
CLIQ ∈ NP
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The Vertex Cover Problem

Definition (Vertex Cover)
Given a graph G with vertices V , a vertex cover is a set of vertices
V ′ ⊆ V such that every edge in G is adjacent to some vertex in V ′.

Definition (The Vertex Cover Problem)
Given a graph G and an integer k , the Vertex Cover Problem (VC)
asks whether there exists a vertex cover in G of size k .

Theorem
VC ∈ NP
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Assignment

Homework
Section 14.3 Exercises 2, 3.
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