Complexity Classes P and NP
 Lecture 36 Sections 14.3-14.5

Robb T. Koether

Hampden-Sydney College
Mon, Nov 28, 2016
(1) Multitape Turing Machines
(2) The Classes $\operatorname{DTIME}(T(n))$ and $\operatorname{NTIME}(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4 Assignment

Outline

(9) Multitape Turing Machines

(2) The Classes $D \operatorname{TIME}(T(n))$ and $\operatorname{NTIME}(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4) Assignment

Multitape Turing Machines

TheoremIf a two-tape Turing machine can carry out a computation in n steps,then a one-tape Turing machine can simulate that computation in$O\left(n^{2}\right)$ steps.

Multitape Turing Machines

Theorem
If a two-tape Turing machine can carry out a computation in n steps, then a one-tape Turing machine can simulate that computation in $O\left(n^{2}\right)$ steps.

Corollary
 If a two-tape Turing machine can carry out a computation in $T(n)$ steps, then a one-tape Turing machine can simulate that computation in $O\left(T(n)^{2}\right)$ steps.

Multitape Turing Machines

Proof.

- For each move of the two-tape machine, the one-tape machine must scan its tape to read the contents stored on Tape 2 of the two-tape machine.
- Each step of the two-tape machine can add at most 2 cells, one on each tape.
- After n moves, there are $O(n)$ cells to scan.
- Thus, the one-tape machine can simulate the computation in $n \cdot O(n)=O\left(n^{2}\right)$ moves.

Multitape Turing Machines

Corollary

If a k-tape Turing machine can carry out a computation in n steps, then a one-tape Turing machine can simulate that computation in $O\left(n^{2}\right)$ steps.

Multitape Turing Machines

Corollary

If a k-tape Turing machine can carry out a computation in n steps, then a one-tape Turing machine can simulate that computation in $O\left(n^{2}\right)$ steps.

Proof.

Note that $2 n$ and $k n$ are both in $O(n)$. The rest of the proof is the same.

Multitape Turing Machines

[^0]
Multitape Turing Machines

Theorem
 If a nondeterministic Turing machine M can carry out a computation in n steps, then a standard Turing machine can simulate that computation in $O\left(k^{\text {an }}\right)$ steps, for some constants k and a dependent on M, but not on n.

- Note that what the nondeterministic Turing machine can do in linear time may take exponential time on a deterministic Turing machine.

Outline

(1) Multitape Turing Machines
(2) The Classes $D \operatorname{TIME}(T(n))$ and $N T I M E(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem
(4) Assignment

Deciding in time $T(n)$

Definition

A Turing machine M decides a language L in time $T(n)$) if M decides every $w \in L$ in at most time $T(n)$, where $n=|w|$.

Deciding in time $T(n)$

Definition

A Turing machine M decides a language L in time $T(n)$) if M decides every $w \in L$ in at most time $T(n)$, where $n=|w|$.

What about strings not in L ?

Deciding in time $T(n)$

Definition

A Turing machine M decides a language L in time $T(n)$) if M decides every $w \in L$ in at most time $T(n)$, where $n=|w|$.

What about strings not in L ?

Definition

A nondeterministic Turing machine M decides a language L in time $T(n)$ if for every $w \in L$, there is at least one path to acceptance and M halts on all inputs w in at most $T(n)$ moves, where $n=|w|$.

The Classes $\operatorname{DTIME}(T(n))$ and $\operatorname{NTIME}(T(N))$

Definition

A language L is in the class $\operatorname{DTIME}(T(n))$ if there exists a deterministic multitape Turing machine that decides L in at most time $T(n)$.

The Classes $\operatorname{DTIME}(T(n))$ and $\operatorname{NTIME}(T(N))$

Definition

A language L is in the class $\operatorname{DTIME}(T(n))$ if there exists a deterministic multitape Turing machine that decides L in at most time $T(n)$.

Definition

A language L is in the class $\operatorname{NTIME}(T(n))$ if there exists a nondeterministic multitape Turing machine that decides L in at most time $T(n)$.

Definition (The Class \mathbf{P})

The class \mathbf{P} is the class of all languages that can be decided deterministically in polynomial time. That is,

$$
\mathbf{P}=\bigcup_{i=1}^{\infty} \operatorname{DTIME}\left(n^{i}\right) .
$$

Definition (The Class \mathbf{P})

The class \mathbf{P} is the class of all languages that can be decided deterministically in polynomial time. That is,

$$
\mathbf{P}=\bigcup_{i=1}^{\infty} D \operatorname{TIME}\left(n^{i}\right) .
$$

Definition (The Class NP)

The class NP is the class of all languages that can be decided nondeterministically in polynomial time. That is,

$$
\mathbf{N P}=\bigcup_{i=1}^{\infty} N T I M E\left(n^{i}\right) .
$$

Outline

(9) Multitape Turing Machines
(2) The Classes $D \operatorname{TIME}(T(n))$ and $\operatorname{NTIME}(T(N))$

(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4. Assignment

Outline

(9) Multitape Turing Machines
(2) The Classes $D T \operatorname{IME}(T(n))$ and $N T I M E(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4) Assignment

SAT is in NP

Example (SAT is in NP)

- Set up the problem.

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)
- Encode e on the tape using the alphabet

$$
\Sigma=\{x, 0,1, \bar{x}, \wedge, \vee,(,)\} .
$$

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)
- Encode e on the tape using the alphabet

$$
\Sigma=\{x, 0,1, \bar{x}, \wedge, \vee,(,)\}
$$

- This would require $O(n \log n)$ cells.

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)
- Encode e on the tape using the alphabet

$$
\Sigma=\{x, 0,1, \bar{x}, \wedge, \vee,(,)\}
$$

- This would require $O(n \log n)$ cells.
- Generate a solution.

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)
- Encode e on the tape using the alphabet

$$
\Sigma=\{x, 0,1, \bar{x}, \wedge, \vee,(,)\} .
$$

- This would require $O(n \log n)$ cells.
- Generate a solution.
- Nondeterministically choose a boolean value for each of the variables.

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)
- Encode e on the tape using the alphabet

$$
\Sigma=\{x, 0,1, \bar{x}, \wedge, \vee,(,)\} .
$$

- This would require $O(n \log n)$ cells.
- Generate a solution.
- Nondeterministically choose a boolean value for each of the variables.
- This can be done in $O(n)$ time.

SAT is in NP

Example (SAT is in NP)

- Set up the problem.
- Let n be the length of the boolean expression e (in CNF). ($n=$ Number of literals.)
- Encode e on the tape using the alphabet

$$
\Sigma=\{x, 0,1, \bar{x}, \wedge, \vee,(,)\} .
$$

- This would require $O(n \log n)$ cells.
- Generate a solution.
- Nondeterministically choose a boolean value for each of the variables.
- This can be done in $O(n)$ time.
- Write the potential solution on Tape 2.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.
- Scan Tape 1, marking the clauses that it satisfies.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.
- Scan Tape 1, marking the clauses that it satisfies.
- This can be done in time $O(n \log n)$ for each variable.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.
- Scan Tape 1, marking the clauses that it satisfies.
- This can be done in time $O(n \log n)$ for each variable.
- So it can be done for all the variables in $O\left(n^{2} \log n\right)$ time.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.
- Scan Tape 1, marking the clauses that it satisfies.
- This can be done in time $O(n \log n)$ for each variable.
- So it can be done for all the variables in $O\left(n^{2} \log n\right)$ time.
- Finally, scan Tape 1 to see whether every clause is satisfied.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.
- Scan Tape 1, marking the clauses that it satisfies.
- This can be done in time $O(n \log n)$ for each variable.
- So it can be done for all the variables in $O\left(n^{2} \log n\right)$ time.
- Finally, scan Tape 1 to see whether every clause is satisfied.
- This can be done in $O(n \log n)$ time.

SAT is in NP

Example (SAT is in NP)

- Verify the solution.
- For each x_{i}, get its value from Tape 2.
- Scan Tape 1, marking the clauses that it satisfies.
- This can be done in time $O(n \log n)$ for each variable.
- So it can be done for all the variables in $O\left(n^{2} \log n\right)$ time.
- Finally, scan Tape 1 to see whether every clause is satisfied.
- This can be done in $O(n \log n)$ time.
- Thus, the problem can be decided in $O\left(n^{2} \log n\right) \subset O\left(n^{3}\right)$ time.

Outline

(9) Multitape Turing Machines
(2) The Classes $D T \operatorname{IME}(T(n))$ and $\operatorname{NTIME}(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4) Assignment

The Hamiltonian Path Problem

Definition (Hamiltonian Path)

Given a graph G, a Hamiltonian path is a path that passes through every vertex of G exactly once.

The Hamiltonian Path Problem

Definition (Hamiltonian Path)

Given a graph G, a Hamiltonian path is a path that passes through every vertex of G exactly once.

Definition (The Hamiltonian Path Problem)
Given a graph \mathcal{G}, the Hamiltonian Path Problem (HAMPATH) asks whether there exists a Hamiltonian path in G.

The Hamiltonian Path Problem

Definition (Hamiltonian Path)

Given a graph G, a Hamiltonian path is a path that passes through every vertex of G exactly once.

Definition (The Hamiltonian Path Problem)
Given a graph G, the Hamiltonian Path Problem (HAMPATH) asks whether there exists a Hamiltonian path in G.

Theorem HAMPATH $\in \mathbf{N P}$

Outline

(9) Multitape Turing Machines
(2) The Classes $D T \operatorname{IME}(T(n))$ and $\operatorname{NTIME}(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4) Assignment

The Clique Problem

Definition (Clique)

Given a graph G, a clique is a complete subgraph $G^{\prime} \subseteq G$. That is, every two vertices in G^{\prime} are adjacent.

The Clique Problem

Definition (Clique)

Given a graph G, a clique is a complete subgraph $G^{\prime} \subseteq G$. That is, every two vertices in G^{\prime} are adjacent.

Definition (The Clique Problem)

Given a graph G and an integer k, the Clique Problem (CLIQ) asks whether there exists a clique in G of size k.

The Clique Problem

Definition (Clique)

Given a graph G, a clique is a complete subgraph $G^{\prime} \subseteq G$. That is, every two vertices in G^{\prime} are adjacent.

Definition (The Clique Problem)

Given a graph G and an integer k, the Clique Problem (CLIQ) asks whether there exists a clique in G of size k.

Theorem
 $C L I Q \in \mathbf{N P}$

Outline

(9) Multitape Turing Machines
(2) The Classes $D T \operatorname{IME}(T(n))$ and $N T I M E(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4) Assignment

The Vertex Cover Problem

Definition (Vertex Cover)

Given a graph G with vertices V, a vertex cover is a set of vertices $V^{\prime} \subseteq V$ such that every edge in G is adjacent to some vertex in V^{\prime}.

The Vertex Cover Problem

Definition (Vertex Cover)

Given a graph G with vertices V, a vertex cover is a set of vertices $V^{\prime} \subseteq V$ such that every edge in G is adjacent to some vertex in V^{\prime}.

Definition (The Vertex Cover Problem)

Given a graph G and an integer k, the Vertex Cover Problem (VC) asks whether there exists a vertex cover in G of size k.

The Vertex Cover Problem

Definition (Vertex Cover)

Given a graph G with vertices V, a vertex cover is a set of vertices $V^{\prime} \subseteq V$ such that every edge in G is adjacent to some vertex in V^{\prime}.

Definition (The Vertex Cover Problem)

Given a graph G and an integer k, the Vertex Cover Problem (VC) asks whether there exists a vertex cover in G of size k.

Theorem
 $V C \in \mathbf{N P}$

Outline

(9) Multitape Turing Machines
(2) The Classes $D \operatorname{TIME}(T(n))$ and $\operatorname{NTIME}(T(N))$
(3) Examples

- The Satisfiability Problem
- The Hamiltonian Path Problem
- The Clique Problem
- The Vertex Cover Problem

4 Assignment

Assignment

Homework

- Section 14.3 Exercises 2, 3.

[^0]: Theorem
 If a nondeterministic Turing machine M can carry out a computation in n steps, then a standard Turing machine can simulate that computation in $O\left(k^{\text {an }}\right)$ steps, for some constants k and a dependent on M, but not on n.

